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Abstract

An iterative technique is used to calculate a higher-order approximation to the periodic solutions of a conservative

oscillator for which the elastic force term is proportional to x1=3. The related van der Pol-type limit-cycle oscillator is also

studied.

r 2005 Elsevier Ltd. All rights reserved.
The purpose of this Short Communication is to calculate a higher-order approximation to the periodic
solutions of the following differential equations [1–3]:

€xþ x1=3 ¼ 0, (1)

€xþ x1=3 ¼ ��ð1� x2Þ _x, (2)

using an iteration technique derived by Mickens [4]. These equations represent a new class of nonlinear
oscillating systems [1]. The work presented here extends previous results given in Mickens [1–3] which relied
primarily on the method of harmonic balance [5] as the tool for determining the oscillatory solutions.

The details of the iteration technique are given in Mickens [4]; consequently, only an outline of the method
is required here.

The nonlinear oscillator equation is assumed to take the form

€xþ gðxÞ ¼ �f ðx; _xÞ; xð0Þ ¼ A; _xð0Þ ¼ 0, (3)

where � is a positive parameter and the functions gðxÞ and f ðx; _xÞ are assumed to satisfy the conditions

gð�xÞ ¼ �gðxÞ; f ð�x;� _xÞ ¼ �f ðx; _xÞ. (4)

Eq. (3) can be rewritten as

€xþ O2x ¼ Gðx; _xÞ, (5)
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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where the constant O2 is to be determined later and Gðx; _xÞ is given by the expression

Gðx; _xÞ � O2x� gðxÞ þ �f ðx; _xÞ. (6)

The iteration scheme defines the ðk þ 1Þ-approximation to the solution of Eq. (5) as

€xkþ1 þ O2xkþ1 ¼ Gðxk; _xkÞ þ Gxðxk; _xkÞðxk � xk�1Þ þ G _xðxk; _xkÞð _xk � xk�1Þ, (7)

where k ¼ 0; 1; 2; . . . ,

Gx �
qG

qx
; G _x �

qG

q _x
, (8)

and the initiation or starting solutions are

x�1ðtÞ ¼ x0ðtÞ ¼ A cosðOtÞ, (9)

xkþ1ð0Þ ¼ A; _xkþ1ð0Þ ¼ 0. (10)

The angular frequency, O, is calculated anew at each stage of the iteration procedure by demanding that the
right-hand side of Eq. (7) contains no terms giving rise to secular terms in the complete solution of Eq. (7) with
initial conditions stated in Eq. (10).

For the oscillator modeled by Eq. (1), it follows that

Gðx; _xÞ ¼ O2x� x1=3. (11)

Note that G _xðx; _xÞ ¼ 0, and

Gxðx; _xÞ ¼ O2 �
1

3

� �
1

x2=3
. (12)

Thus, Gx has a singularity at x ¼ 0. However, what appears, for k ¼ 0, in Eq. (7) is the expression
Gxðx0; _x0Þðx0 � x�1Þ which when properly evaluated, using Eq. (9), gives the result

Gxðx0; _x0Þðx0 � x�1Þ ¼ 0. (13)

This means that the differential equation to be solved for x1ðtÞ is

€x1 þ O2x1 ¼ O2A cosðOtÞ � ½A cosðOtÞ�1=3. (14)

At this point, there are two things to note. First, the iteration scheme cannot be extended for Eq. (1) to
calculate xkðtÞ for kX2. This is because the singularities occurring on the right-hand side of Eq. (7) cannot be
eliminated. Second, a Fourier series representation is needed for ðcos yÞ1=3 for the calculation of x1ðtÞ to
proceed.

The Fourier series for ðcos yÞ1=3 has been calculated [6] and is given by

ðcos yÞ1=3 ¼
X1
n¼0

a2nþ1 cosð2nþ 1Þy, (15)

a2nþ1 ¼
3Gð7

3
Þ

24=3Gðnþ 5
3ÞGð

2
3�mÞ

, (16)

with a1 ¼ 1:159595266963929. Therefore, the first several terms are

ðcos yÞ1=3 ¼ a1 cos y�
cosð3yÞ

5
þ

cosð5yÞ
10

�
7 cosð7yÞ

110
þ

cosð9yÞ
22

�
13 cosð11yÞ

374
þ � � �

� �
. (17)

Substituting Eq. (16) into the right-hand side of Eq. (14) gives

€x1 þ O2x1 ¼ ðO2A� A1=3a1Þ cosðOtÞ � A1=3
X1
n¼1

a2nþ1 cos½ð2nþ 1ÞOt�. (18)
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Secular terms can be eliminated by requiring the coefficient of the cosðOtÞ term to be zero, i.e.,

O2 ¼
a1

A2=3
or A1=3O ¼

ffiffiffiffiffi
a1
p
¼ 1:076845. (19)

Therefore, x1ðtÞ is the solution to the differential equation

€x1 þ O2x1 ¼ �A1=3
X1
n¼1

a2nþ1 cos½ð2nþ 1ÞOðAÞt�, (20)

subject to x1ð0Þ ¼ A and _x1ð0Þ ¼ 0. Eq. (20) is a second-order, linear, inhomogeneous differential equation
with constant coefficients; its solution is [7]

x1ðtÞ ¼ bA cos½OðAÞt� þ A
X1
n¼1

a2nþ1

a1½ð2nþ 1Þ2 � 1�

� �
cos½ð2nþ 1ÞOðAÞt�, (21)

where OðAÞ is given by Eq. (19), and b is the constant

b ¼ 1�
X1
n¼1

a2nþ1

a1½ð2nþ 1Þ2 � 1�
. (22)

The actual value for b can be determined by numerically summing the right-hand side of Eq. (22) to some large
value N, i.e.,

b! bN ¼ 1�
XN

n¼1

a2nþ1

a1½ð2nþ 1Þ2 � 1�
. (23)

Several techniques are available for doing this in a fast and efficient manner [8]. In any case, the essential point
is that b has a definite numerical value that can be calculated as accurately as needed.

Observe that the solution x1ðtÞ contains only odd harmonics and has contributions from all of them. In
Eq. (19) the value of A1=3OðAÞ is given. For purposes of comparison, the following estimates for this quantity
are presented:

A1=3O1ðAÞ ¼ 1:0491; A1=3O2ðAÞ ¼ 1:0704, (24)

A1=3OeðAÞ ¼ 1:070451. (25)

In the above, O1ðAÞ and O2ðAÞ are calculated, respectively, from first- and second-order harmonic balance
procedures [2]. The exact value, OeðAÞ, is that given in Eq. (25).

The calculation of OeðAÞ proceeds as follows. A first-integral [5] of Eq. (1) is

y2

2
þ

3

4

� �
x4=3 ¼

3

4

� �
A4=3; y � _x (26)

and the corresponding period of the oscillation is

TðAÞ ¼

ffiffiffiffiffi
32

3

r Z A

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A4=3 � x4=3

p . (27)

The substitution x ¼ Aw3=2 gives, after some simplification,

TðAÞ ¼ 2
ffiffiffi
6
p� 	

fA1=3, (28)

where

f �
Z 1

0

w1=2 dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ wÞð1� wÞ

p . (29)
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Since OðAÞ ¼ 2p=TðAÞ, it follows that

A1=3OðAÞ ¼
pffiffiffi
6
p

f
. (30)

Using Gradshteyn and Ryzhik [9], see Section 3.14 (formula 10), the value of f can be determined from the
definite integral

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

ð1þ wÞð1� wÞ

r
dw ¼ 2

ffiffiffi
2
p

E
p
2
;
1ffiffiffi
2
p

� �
�

ffiffiffi
2
p

F
p
2
;
1ffiffiffi
2
p

� �
, (31)

where

F
p
2
;
1ffiffiffi
2
p

� �
¼ F

1ffiffiffi
2
p

� �
; E

p
2
;
1ffiffiffi
2
p

� �
¼ E

1ffiffiffi
2
p

� �
, (32)

are, respectively, the complete elliptic integrals of the first and second kinds [10]. Their values are

F
1ffiffiffi
2
p

� �
¼ 1:854075; E

1ffiffiffi
2
p

� �
¼ 1:350644. (33)

With these results, f can be calculated and OðAÞ found to be

A1=3OeðAÞ ¼ 1:070451, (34)

which is the result reported in Eq. (25).
Comparison of the various estimates for A1=3OðAÞ indicates that the calculation presented here, see Eq. (19),

and from the second-order harmonic balance method are in excellent agreement with the exact value of Eq.
(34). These results provide confirmation for the validity of the iteration method as applied to Eq. (1). This
holds in spite of the fact that this method only holds for one step of iteration.

Turning to the van der Pol-type modification, i.e., Eq. (2), the function Gðx; _xÞ is

Gðx; _xÞ ¼ O2x� x1=3 þ �ð1� x2Þ _x (35)

and the equation for x1ðtÞ is, see Eqs. (7), (8), and (9),

€x1 þ O2x1 ¼ O2x0 � x
1=3
0 þ �ð1� x2

0Þ _x0. (36)

Note that the terms involving Gx and G _x when placed in the iteration scheme are equal to zero. Using
x0ðtÞ ¼ A cosðOtÞ and the Fourier expansion for ðcos yÞ1=3, it follows that Eq. (36) becomes

€x1 þ O2x1 ¼ ½O2A� A1=3a1� cos y� A1=3
X1
n¼1

a2nþ1 cos½2ðnþ 1ÞOt�

þ ð�AOÞ
A2

4
� 1

� �
sinðOtÞ þ

�A3O
4

� �
sinð3OtÞ. ð37Þ

The condition that x1ðtÞ contains no secular terms gives the two relations

O2A� a1A1=3 ¼ 0 or A1=3O ¼
ffiffiffiffiffi
a1

p
, (38)

A2

4
� 1 ¼ 0 or A ¼ 2. (39)

Therefore,

A ¼ 2; O ¼
ffiffiffiffiffi
a1
p

21=3
¼ 0:8547. (40)
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Since Eq. (37) is a second-order, linear, inhomogeneous differential equation, its solution can be readily
obtained [7] and the result is

x1ðtÞ ¼ bA cos½OðAÞt� þ
�

24=3

� �
f3 sin½OðAÞt� � sin½3OðAÞt�g

þ A
X1
n¼1

a2nþ1

a1½ð2nþ 1Þ2 � 1�

� �
cos½ð2nþ 1ÞOðAÞt�, ð41Þ

where b is given by Eq. (22). Note that all odd harmonics involving ‘‘cosine’’ terms appear, while only the first
two odd harmonics occur for the ‘‘sine’’ terms. Also, observe that while the standard van der Pol equation

€xþ x ¼ �ð1� x2Þ _x; 0o�� 1, (42)

has the angular frequency

O ¼ 1þOð�2Þ, (43)

the modified van der Pol equation has an angular frequency approximately 15% less; see Eq. (40). As was the
case for Eq. (1), the iteration scheme cannot be extended beyond the first stage. It should be obvious that only
the stationary oscillatory periodic motion can be calculated using this method.

In summary, an iteration technique [4] has been used to calculate approximations to the periodic solutions
for two oscillators for which the elastic force terms are proportional to x1=3. None of the standard
perturbation methods [5] can be applied to these equations. This fact is emphasized in Mickens [2,3]. However,
the method of harmonic balance can and has been applied to these equations [2]. Comparison between the
iteration procedure and the harmonic balance methods shows that the two techniques are in excellent
agreement, especially with regard to the calculated values of the angular frequency. The major conclusion is
that the iteration scheme [4] provides excellent approximations to the solutions of Eqs. (1) and (2) even though
the iteration can only be done to the first stage. For oscillatory systems, modeled by equations such as those
expressed by Eqs. (1) and (2), a future research issue is to see if an alternative iteration method can be devised
such that higher-order iterations can be done. It is also of great interest to see, for systems having limit-cycles,
if iteration methods exist allowing the calculation of the transitory behavior of the solutions to the limit-cycle.

The work reported here was supported in part by a research grant from DOE.
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